If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+60y=0
a = 3; b = 60; c = 0;
Δ = b2-4ac
Δ = 602-4·3·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60}{2*3}=\frac{-120}{6} =-20 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60}{2*3}=\frac{0}{6} =0 $
| 4x÷3=10x-9 | | 2.3q-1.6-3.5q=-0.2q-1.6 | | 5+10x-1=13x+1 | | a+a+16=3 | | a+(a+16)=36 | | -5+5v=4+4v | | -7q=9-4q | | -7q=94q | | T-8=10-5t | | 2d+2=-6+10d | | 2x+18+11=x+21 | | 10f=6f-4 | | -5p+2=10-7p | | -5p+2=10−7p | | 1/8•1/11x+1/88x=8 | | R-8=2r | | r−8=2r | | 11.61-5.4b+3.07=-2(4b+15.28) | | 8n+8=10n | | 8c+5=-9c | | 5/4K+3/8k=1/2 | | 16+3x-2=6x | | 3x^2+20x+23=0 | | 8c−3=7+9c | | 3x^2+20x+-23=0 | | 3x2+20x+-23=0 | | -8c+5=-9c | | 3x-292.3=3x | | 3a+6=11+2a | | -9z+8=-7z | | 500=-2x+90 | | 18.14+17.9g-3.86=3.3g+17.2 |